
Limit-Deterministic Büchi Automata
for Linear Temporal Logic?

Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský

Technische Universität München

Abstract. Limit-deterministic Büchi automata can replace deterministic
Rabin automata in probabilistic model checking algorithms, and can be
significantly smaller. We present a direct construction from an LTL
formula ϕ to a limit-deterministic Büchi automaton. The automaton
is the combination of a non-deterministic component, guessing the set
of eventually true G-subformulas of ϕ, and a deterministic component
verifying this guess and using this information to decide on acceptance.
Contrary to the indirect approach of constructing a non-deterministic
automaton for ϕ and then applying a semi-determinisation algorithm, our
translation is compositional and has a clear logical structure. Moreover,
due to its special structure, the resulting automaton can be used not only
for qualitative, but also for quantitative verification of MDPs, using the
same model checking algorithm as for deterministic automata. This allows
one to reuse existing efficient implementations of this algorithm without
any modification. Our construction yields much smaller automata for
formulas with deep nesting of modal operators and performs at least as
well as the existing approaches on general formulas.

1 Introduction

Translating Linear Temporal Logic (LTL) formulas into ω-automata is a funda-
mental problem of formal verification, which has been studied in depth. In the
automata-theoretic approach to model checking, after computing the automaton
for a formula one constructs its product with the state space of the system under
consideration and analyses it. Since the product has up to N ·m states, where N
and m are the number of states of the system and the automaton, respectively,
and typically N � m, it is important to construct automata as small as possible:
even a small reduction of m can lead to a much larger reduction of N ·m.

Since non-deterministic ω-automata are typically much smaller than deter-
ministic ones, for standard LTL model checking one translates formulas into
non-deterministic Büchi automata. However, this is no longer possible for proba-
bilistic model checking, and the standard approach is to use deterministic Rabin
automata (DRA) instead—this is for instance the approach of the PRISM tool
[3, 22]. Translations of LTL into DRA have been thoroughly studied. Classical
translations take a detour through Büchi automata as intermediate step [25, 24,
26], while more recent ones are direct translations [11, 19].
? This work is partially funded by the DFG Research Training Group “PUMA:
Programm- und Modell-Analyse” (GRK 1480)

It has been known for a long time that automata for probabilistic verification
do not need to be fully deterministic: the automata-theoretic approach still works
if restricted forms of non-determinism are allowed. For probabilistic verification
of Markov chains one can use unambiguous Büchi automata (separated UBA [7],
or even non-separated UBA [2]). The translation from LTL to separated UBA
involves a single exponential blowup, while the translation to DRA is known
to be double exponential. However, UBA cannot be used for the verification
of Markov Decision Processes (MDPs). For qualitative verification of MDPs1
one can use limit-deterministic Büchi automata (LDBA) [27, 6] (also known as
semi-deterministic or deterministic-in-the-limit). For quantitative verification
of MDPs, limit-deterministic automata are not sufficient in general. However,
recently [14], a more complex algorithm for probabilistic model checking was
presented, considering products of the system and its parts with several different
automata, including LDBA.

The translation LTL→LDBA is double exponential, and so in principle as
expensive as the translation to DRA in the worst case. However, it is easy to
find examples where the LDBA is much smaller than the DRA; in particular, in
[16] it is shown that the LTL\GU fragment of LTL can be translated to LDBAs
with a single-exponential blowup, while the translation to DRA is still double
exponential. Further, efficient procedures for LDBA complementation exist [4].

In this paper, we give a compositional translation from full LTL to LDBAs,
based on the one from LTL to DRAs recently presented in [11]. We then show
that, due to the special form of the resulting LDBAs, the translation can also be
used for quantitative model checking of MDPs, and in fact by means of the same
algorithm as for DRAs. That is, in order to compute the maximal probability
that an MDP M satisfies a formula ϕ we can just construct the product of M
and the LDBA for ϕ obtained by our translation, and compute the maximal
probability of reaching an accepting end component [3].

The translation of [11] becomes much simpler with LDBAs as target, instead
of DRAs. In order to check if a word w satisfies a formula ϕ, our LDBAs use
their restricted non-determinism to guess the set of G-subformulas of ϕ that
are eventually satisfied by w (i.e., the subformulas Gϕ such that w |= FGψ),
and the point at which all these subformulas have already become true. At this
point the LDBA enters its deterministic component to check that the guess is
correct, and that w |= ϕ holds under the assumption that the guess is correct.
We show that our translation produces LDBA of at most double exponential size,
and exhibit a family of LTL formulas for which the smallest LDBA reaches this
double exponential bound.

We conclude the paper with an experimental evaluation of an implementation
of our construction on a large set of benchmarks. We compare the size of the
generated LDBA with the size of the DRA provided by the Rabinizer tool, the
DRA constructed by LTL2DSTAR, and the LDBA produced by the procedure of
[6]: translate the formula into a Büchi automaton, apply the translation of Büchi
automata to LDBA described in [6], and simplify the result. For the comparison
we use the LTL3BA tool [1] and SPOT [8].
1 Recall that qualitative verification checks if the property holds with probability 1.

2

Outline. Sections 2 and 3 contain preliminaries. Section 4 presents an intuitive
overview of the translation by means of an example. Section 5 formally defines
the translation, Section 6 describes several optimisations, and Section 7 gives the
complexity bounds. Quantitative verification is discussed in Section 8. Exper-
imental results are presented in Section 9. Section 10 concludes and discusses
future work.

2 Preliminaries

2.1 Linear Temporal Logic

We use a slightly unusual syntax for LTL. We consider formulas without negations
and without the Release operator R— the dual of the Until operator U— but
with both F and G. Formulas in the usual syntax are transformed into equivalent
formulas in our syntax by pushing negations inside, and—in the absence of R—
using the equivalence ¬(ϕUψ) = (¬ψU(¬ψ ∧ ¬ϕ)) ∨G¬ψ. This may cause the
formula to grow exponentially, when formulas are represented by their syntax trees.
However, if they are represented by their syntax DAGs, then the transformation
only causes a linear blowup.

Definition 1 (LTL). A formula of LTL in negation normal form is given by
the syntax:

ϕ ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap. An ω-word w is an infinite sequence of letters w[0]w[1]w[2]
We denote the infinite suffix w[i]w[i+ 1] . . . by wi. The satisfaction relation |=
between ω-words and formulas is inductively defined as follows:

w |= tt w 6|= ff
w |= a iff a ∈ w[0]
w |= ¬a iff a 6∈ w[0]
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= Xϕ iff w1 |= ϕ
w |= Fϕ iff ∃k.wk |= ϕ
w |= Gϕ iff ∀k.wk |= ϕ
w |= ϕUψ iff ∃k.wk |= ψ and

∀0 ≤ j < k.wj |= ϕ

Given two formulas ϕ and ψ, we denote by ϕ[Φ/ψ] the result of substituting
ψ for each maximal occurrence of a formula of Φ in ϕ (an occurrence is maximal
if it is not a subformula of another occurrence). For example, G(a ∨Gb)[{G(a ∨
Gb),Gb}/tt] = tt. Two formulas are equivalent if they are satisfied by the same
words. We under-approximate this using propositional equivalence.

Definition 2 (Propositional Equivalence). A subformula ψ of ϕ is called
proper, if the root of its syntax tree is labelled by either a, ¬a, F, G, U or
X. Given a formula ϕ, we assign to it a propositional formula ϕP as follows:
replace every maximal proper subformula ψ by a propositional variable xψ. Two
formulas ϕ,ψ are propositionally equivalent, denoted ϕ ≡P ψ, iff ϕP and ψP
are equivalent formulas of propositional logic. We denote by [ϕ]P the set of all
formulas propositional equivalent to ϕ.

3

For example, if ϕ = Xb∨(G(a∨Xb)∧Xb) with ψ1 = Xb and ψ2 = G(a∨Xb),
then ϕP = xψ1

∨ (xψ2
∧ xψ1

) ≡ xψ1
. Thus Xb is propositionally equivalent to ϕ

and Xb ∈ [ϕ]P .

2.2 Formula Expansion

Our translation relies on the “After Function” af (ϕ,w), read “ϕ after w” [11].
Intuitively, ϕ holds for ww′ iff af (ϕ,w) holds “after reading w”, that is, if w′ |=
af (ϕ,w).

Definition 3. Let ϕ be a formula and ν ∈ 2Ap a single letter. af (ϕ, ν) is then
defined as follows:

af (tt, ν) = tt

af (ff , ν) = ff

af (a, ν) =

{
tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) =
{

ff if a ∈ ν
tt if a /∈ ν

af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)

af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ

af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ

af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ

af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)

Furthermore, we generalize the definition to finite words: af (ϕ, ε) = ϕ; and
af (ϕ, νw) = af (af (ϕ, ν), w) for every ν ∈ 2Ap and every finite word w. Finally,
we define the set of from ϕ reachable formulas as Reach(ϕ) = {[ψ]P | ∃w. ψ =
af (ϕ,w)}.

Example 1. Let Ap = {a, b, c} and ϕ = a ∨ (b U c). We have af (ϕ, {a}) = tt
af (ϕ, {b}) = (b U c), af (ϕ, {c}) = tt, and af (ϕ, ∅) = ff .

The following lemmas show that af has indeed the claimed property, and
others.

Lemma 1 ([11], Lem. 7). Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an
arbitrary word. Then ww′ |= ϕ iff w′ |= af (ϕ,w).

Lemma 2 ([11], Lem. 11). Let ϕ be a G-free formula and let w be a word.
Then w |= ϕ iff there exists i > 0 such that af (ϕ,w0j) ≡P tt for every j ≥ i.

We now show that Reach(ϕ) — a building block for the construction — is
finite, and contains at most a double exponential number of elements.

Lemma 3. For every formula ϕ and every finite word w ∈ (2Ap)∗:

(1) af (ϕ,w) is a boolean combination of proper subformulas of ϕ.
(2) If ϕ has n proper subformulas, then Reach(ϕ) has at most size 22

n

.

Proof. (1) By definition, every formula is a boolean combination of its proper
subformulas. So it suffices to prove that every proper subformula of af (ϕ,w) is
also a proper subformula of ϕ. For w = ν this follows by an easy induction on ϕ,
and for an arbitrary w by induction on |w|.

4

(2) By (1), every equivalence class [ψ]P ∈ Reach(ϕ) can be uniquely identified
with a Boolean function over n variables, one for each proper subformula of ϕ.
Since there are 22

n

Boolean functions over n variables, we have at most so many
equivalence classes. ut

Remark 1. It is easy to show by induction that ϕ ≡P ψ implies af (ϕ,w) ≡P
af (ψ,w) for every finite word w. We extend af to equivalence classes by defining
af ([ϕ]P , w) := [af (ϕ,w)]P . Sometimes we abuse language and identify a formula
and its equivalence class. For example, we write “the states of the automaton are
pairs of formulas” instead of “pairs of equivalence classes of formulas”.

3 Limit-deterministic Büchi Automata

For convenience, we use Büchi automata with an accepting set of transitions,
instead of an accepting set of places. We also consider generalized Büchi au-
tomata with several sets of accepting transitions. It is well known that all these
classes accept the ω-regular languages and there are polynomial-time translations
between them.

Definition 4 (Transition-based Generalized Büchi Automata). A gen-
eralized transition-based Büchi automaton (TGBA) is a tuple B = (Σ,Q,∆, q0, α)
where Σ is an alphabet, Q is a finite set of states, ∆ : Q×Σ → 2Q is a transition
function, q0 is the initial state, and α = {F1, F2, . . . Fn} with Fi ⊆ Q×Σ ×Q is
an accepting condition.

A run r of a TGBA B on the ω-word w is an infinite sequence of transitions
r = (q0, w[0], q1)(q1, w[1], q2) . . . respecting the transition function, i.e. r[i] ∈ ∆
for every i ≥ 0. We denote by inf(r) the set of transitions occurring infinitely
often in the run. A run is called accepting if for each set of transitions F ∈ α there
is at least one transition in the run occurring infinitely often, i.e. if inf(r)∩F 6= ∅.
An infinite word w is accepted by B and is in the language L(B) if there exists
an accepting run r for w.

Intuitively, a TGBA is limit-deterministic if it can be split into a non-
deterministic component without accepting transitions, and a deterministic com-
ponent. The automaton can only accept by “jumping” from the non-deterministic
to the deterministic component, but after the jump must stay in the deterministic
component forever.

Definition 5 (Limit-Determinism). A TGBA B = (Σ,Q,∆, q0, α) is limit-
deterministic if Q can be partitioned into two disjoint sets Q = QN]QD, s.t.

1. ∆(q, ν) ⊆ QD and |∆(q, ν)| = 1 for every q ∈ QD, ν ∈ Σ and
2. F ⊆ QD ×Σ ×QD for all F ∈ α

4 Overview of the Construction

We first explain the main ideas underlying our construction on the formula
ϕ = c∨XG(a∨Fb), and then show how to generalise them to arbitrary formulas.

5

q0 : ϕ

q1 : Gψ

q2 : Gψ ∧ Fb

q3 : tt

p6 : 〈c, ·〉

p7 : 〈tt, ·〉

p0 : 〈Fb, (ψ, tt)〉

p1 : 〈Fb, (Fb, ψ)〉

p2 : 〈Fb, (Fb,Fb)〉

p3 : 〈tt, (ψ, tt)〉

p4 : 〈tt, (Fb, ψ)〉

p5 : 〈tt, (Fb,Fb)〉

c̄

c

ε

ε

a+ b

āb̄

ε

b

ε

b̄

tt

ε

ε

āb̄

b
ab̄

āb̄

b

ab̄

b̄

b

āb̄

a+ b

āb̄

b

ab̄

b̄

b

c

tt

Fig. 1. Automaton A for ϕ = c ∨ XG(a ∨ Fb). Non-accepting sinks (〈ff , ·〉) and
transitions to them have been removed. The initial component is above the dashed
line, the accepting component below. States in the lower part are tuples of an auxiliary
monitor and G-monitors.

We abbreviate ψ := (a ∨ Fb), and so we write ϕ = c ∨ XGψ. The complete
automaton for the formula is shown in Figure 1.

Each state of the automaton for ϕ is labelled with a formula (the state is
the equivalence class of this formula w.r.t. propositional equivalence). The words
accepted from the state are exactly those satisfying the formula. We describe the
initial and accepting components of the automaton, separated in Figure 1 by the
dashed line.
The initial component. The states of the initial component are the formulas
of Reach(ϕ), with ϕ as initial state. The non-ε transitions are given by the
af -function: for every state ϕ′ and letter ν there is a transition labelled by ν
leading to af (ϕ′, ν). With these transitions the component keeps track of the
formula that must be satisfied by the rest of the word.

The only non-determinism is introduced by the “ε-jumps” into the accepting
component. Imagine the automaton is currently at state ϕ′. The automaton
has to check that ϕ′ holds (more formally, that the rest of the run satisfies
ϕ′). Intuitively, taking an ε-jump corresponds to picking a subset G of the G-
subformulas of ϕ′, guessing that they currently hold, and guessing further that

6

ϕ′ holds even if no other G-subformula becomes true in the future. In order to
see how the automaton can check this guess, we introduce some notation.

Definition 6. Given a formula ϕ and a set G of G-formulas, we denote ϕ[G]
the result of substituting tt for every G-subformula of G and ff for every other
G-subformula.

We claim that after the jump the accepting component can check the guess
by checking if (a) G

(
ψ[G]) holds for every Gψ ∈ G, and (b) ϕ′[G] holds.

Indeed, if Gψ ∈ G holds now, then it always holds in the future, and so it can
be replaced by tt. Similarly, if Gψ /∈ G, then ϕ′ should hold even if Gψ never
holds in the future, which—since formulas are in negation normal form—is the
case if ϕ′ holds even after Gψ is replaced by ff .

The crucial point now is that the formulas of (a) are of the form Gψ′, where
ψ′ is G-free, and the formula in (b) contains no occurrence of G at all. So for the
accepting component (described below) it suffices to find deterministic automata
for such formulas.

As a concrete example, consider the two ε-transitions of Figure 1 leaving the
state q0. Since Gψ is the only G-subformula of ϕ, the two possible choices for G
are G = {Gψ} and G = ∅. In the first case, the ε-transition for G = {Gψ} must
lead to a state in charge of checking that (a) G(ψ[G]) = G(a ∨ Fb) holds, and
(b) ϕ[Gψ/tt] = c ∨Xtt ≡P true holds (in this case (b) is trivial). This is the
state p3, whose successors are the part of the accepting component in charge of
checking G(a ∨ Fb). The ε-transition for G = ∅ must lead to a state in charge of
checking ϕ[Gψ/ff] = c ∨Xff ≡P c (if this holds, then ϕ′ holds, independently of
whether Gψ holds or not). This is state p6.

The accepting component. The accepting component consists of several subcompo-
nents, one for each set G of G-formulas. In Figure 1 there are two subcomponents,
one with states {p0, . . . , p5} for G = {Gψ}, and the other with states {p6, p7} for
G = ∅. A subcomponent is a product of deterministic automata: a G-monitor for
every formula Gψ ∈ G, in charge of checking G

(
ψ[G]), and an auxiliary monitor

for each state ϕ′ of the initial component, in charge of checking ϕ′[G]. Consider
for instance the subcomponent with states {p0, . . . , p5}. It is the product of a
three-state G-monitor for Gψ, and a two-state auxiliary monitor for checking
Fb.

Since ϕ′[G] contains no occurrence of G, it is easy to give a deterministic
auxiliary monitor, and we do so in Section 5.2. For the G-monitor for G

(
ψ[G])

we use a breakpoint construction. Intuitively, the monitor must check that every
suffix of the monitored word satisfies ψ′, and so after each step it receives ψ′
as new “proof obligation”. Its states are pairs of formulas (ρ1, ρ2). At state
(ρ1, ρ2) the monitor is currently taking care of the proof obligation ρ1, and
has put ρ2 on hold. Initially ρ1 = ψ and ρ2 = tt. Transitions of the form
δ((ρ1, ρ2), a) = (af (ρ1, a), af (ρ2, a) ∧ ψ′). update the proof obligations according
to the af -function, adding ψ′ to the proof obligation on hold. If ρ1 = tt then
the current proof obligation can be discarded, and the monitor can take care of
the one on hold; this is done by a transition δ((tt, ρ2), a) = (af (ρ2, a) ∧ ψ′, tt).

7

These “discarding” transitions are accepting. If they are taken infinitely often,
then all of the infinitely many proof obligations are eventually discarded.

5 Construction

For the formal presentation of the construction, let ϕ be a fixed formula and let
Ap be the corresponding set of atomic propositions. Further, let G be the set of
G-subformulas of ϕ, i.e. the subformulas of ϕ of the form Gψ. We first describe
the initial component without ε-transitions, then the accepting component, and
then the ε-transitions linking the two.

5.1 Initial Component

As already sketched, the component keeps track in its state of the formula that
must be satisfied by the rest of the word.

Definition 7. The initial component for a formula ϕ is the transition system:

N = (2Ap,Reach(ϕ), af , ϕ)

5.2 Accepting Component

The accepting component for a subset G ⊆ G of G-subformulas is the product
of one auxiliary monitor and one G-monitor for each Gψ ∈ G. First, we show
how to build a G-monitor U for a single G-free formula. Second, we construct a
product P of these G-monitors.

G-Monitor. Let ψ be a G-free formula. We construct a deterministic Büchi
automaton U , called the G-monitor for Gψ, recognising L(Gψ). We first give
the definition, and then explain the intuition behind it.

Definition 8 (G-Monitor). Let ψ be a G-free formula. The G-monitor for ψ
is the deterministic Büchi automaton

U(Gψ) = (2Ap,Reach(ψ)× Reach(ψ), δ, (ψ, tt), F)

where

– δ((ξ, ζ), ν) =

{
(af (ζ, ν) ∧ ψ, tt) if af (ξ, ν) ≡P tt

(af (ξ, ν), af (ζ, ν) ∧ ψ) otherwise
– F = {((ξ, ζ), ν, p) ∈ Q× 2Ap ×Q | af (ξ, ν) ≡P tt}

The states of the monitor are pairs (φ1, φ2) of formulas. Intuitively, from state
(φ1, φ2) the automaton checks if the rest of the run satisfies φ1 ∧ φ2, but starting
with φ1 and putting φ2 “on hold”. The initial state is (ψ, tt). After reading a
letter, say ν1, the automaton moves to δ(ψ, tt) = (af (ψ, ν1), ψ). The meaning is:
the automaton checks if the rest of the run satisfies af (ψ, ν1)∧ψ, but putting the

8

check of ψ “on hold”. If the next letter is, say, ν2, then the automaton moves to
(af (ψ, ν1ν2), af (ψ, ν2) ∧ ψ), keeping the check of af (ψ, ν2) ∧ ψ on hold. However,
if af (ψ, ν1ν2) = tt, then, the automaton knows already that the word ν1ν2 . . .
satisfies ψ, the first check is complete, and the automaton “transfers” the checks
kept on hold to the first position, moving to the state (af (ψ, ν2) ∧ ψ, tt). The
accepting transitions are those at which the automaton completes a check. If the
automaton completes infinitely many checks, then all suffixes of the run satisfy
ψ, and so the run satisfies Gψ.

Lemma 4. Let ψ be a G-free formula and let w be a word, then w |= Gψ iff
U(Gψ) accepts w.

Proof. Assume w |= Gψ. Hence ∀i. wi |= ψ. Since ψ is a G-free formula, af will
eventually derive tt due to Lemma 2, that is, ∀i.∃j. af (ψ,wij) ≡P tt. Hence
U(Gψ) visits infinitely many states (ξ, ζ) such that ξ ≡P tt, and so it accepts.

Assume w 6|= Gψ. Let i be a point where w fails to satisfy ψ (wi 6|= ψ).
Thus af (ψ,wij) 6≡P tt for any j. Once af (ψ,wij) is propagated from the second
component to the first, U(Gψ) never uses an accepting transition again and
hence does not accept. ut

Example 2. The G-monitor for Gψ = G(a ∨ Fb) is the automaton of Figure 2.

p0 : (ψ, tt)

p1 : (Fb, ψ)

p2 : (Fb,Fb)

āb̄

a+ b

āb̄

b

ab̄

b̄

b

Fig. 2. G-monitor for Gψ = G(a ∨ Fb).

Product of G-Monitors. Let ϕ be a formula, and let G be the set of all G-
subformulas of ϕ. Fix a set G = {Gψ1, . . . ,Gψn} ⊆ G. For every index 1 ≤ i ≤ n,
let Ui be the G-monitor for the formula G(ψi[G]).

Definition 9 (Product of G-Monitors). Let U1, . . . ,Un as above, and let
Ui = (2Ap , Qi, δi, q0i, Fi). The product of G-monitors of ϕ with respect to G is
the generalized deterministic Büchi automaton

P(G) = (2Ap,

n∏
i=1

Qi,

n∏
i=1

δi, (q01, . . . , q0n), {F ′1, . . . , F ′n})

9

where ((q1, . . . , qn), ν, (q
′
1, . . . , q

′
n)) ∈ F ′i iff (qi, ν, q′i) ∈ Fi.

Lemma 5. Let G be a set of G-formulas and let w be a word. We have: P(G)
accepts w iff w |= G(ψ[G]) for all Gψ ∈ G.

Proof. Let G = {Gψ1, . . . ,Gψn}, and assume that the formulas are ordered so
that if Gψi is a subformula of ψj then j < i (so, in particular, Gψn is not a
subformula of any of ψ1, . . . , ψn−1).

Assume P(G) accepts w. We prove w |= G(ψi[G]) for every 1 ≤ i ≤ n by
induction on n = |G|. If n = 0, then P(∅) trivially accepts all words, and we
are done. Let now n > 0. Since Gψn is not a subformula of any of ψ1, . . . , ψn−1,
taking G′ := G \ {Gψn} we have ψi[G] = ψi[G′] for every ψi ∈ G. In particular,
P(G) accepts w, then both P(G′) and U(G(ψn[G′])) accept w too. By induction
hypothesis we have w |= G(ψi[G′]) for every 1 ≤ i ≤ n − 1. By Lemma 4 we
obtain w |= G(ψn[G′]). Finally, since ψi[G] = ψi[G′] for every ψi ∈ G, we get
w |= G(ψi[G]) for every 1 ≤ i ≤ n.

The other direction is analogous. ut

5.3 Connecting the Initial and Accepting Components

We now define the ε-transitions leading from states in the initial component to
states in the accepting component. Intuitively, each ε-transition corresponds to a
guess G, and starts the corresponding product P(G). However, recall that if the
source of the transition is the state ϕ′, then the accepting component must also
check that the formula ϕ′[G]) holds. For example, for the state q2 of Figure 1 we
have ϕ′ = Gψ ∧ Fb, and choosing G = Gψ we get ϕ′[G] ≡P Fb. So, intuitively,
the state p0 starts not only P(G), but also a deterministic automaton for Fb.
More formally, p0 is the initial state of the product of P(G) and this deterministic
automaton.

The deterministic automaton for ϕ′′ := ϕ′[G] is very simple. Since ϕ′′

contains no occurrences of G, by Lemma 2 we can just take the automaton
(2Ap,Reach(ϕ′′), af , ϕ′′, {tt}). That is, the automaton keeps tracking the formula
that the rest of the run must satisfy, and accepts iff eventually the formula is
tt. Comparing with the initial component N , we observe that this automaton is
nothing but N with tt as single accepting state, meaning all outgoing transitions
are accepting. We can now define the complete limit-deterministic automaton for
a formula ϕ.

Definition 10. Let ϕ be a formula. Let N = (2Ap, QN , δN , q0N) be the transition
system of Definition 7. Furthermore, for every set G of G-subformulas of ϕ,
let P(G) = (2Ap, QP(G), δP(G), q0P(G), {F(G,Gψ) | Gψ ∈ G}) be the product of
Definition 9. The limit-deterministic automaton A is defined as

A = (2Ap, QN ∪QAcc , δN ∪∆ε ∪∆Acc , ϕ, {Fξ | ξ ∈ G})

where

10

QAcc =
⋃
G⊆G

(QN ×QP(G)) and ∆Acc =
⋃
G⊆G

(δN × δP(G))

∆ε = {(χ, ε, (χ[G], q0G)) | χ ∈ QN ,G ⊆ G}

Fξ =
⋃
G⊆G

{
((tt, q), ν, (tt, q′)) | (q, ν, q′) ∈ F(G,ξ)

}
Example 3. The complete automaton A for ϕ = c ∨ XG(a ∨ Fb), displayed
in Figure 1, consists of the initial component above the dashed line, and the
products of the auxiliary monitor with the product automata P for G1 = {} and
G2 = {Gψ} (below the dashed line)

5.4 Correctness

We prove a stronger correctness statement: For every state ψ ∈ QN of the initial
component, the words w accepted from ψ are exactly those that satisfy ψ. Before
we proceed, we need the notion of a stable set of G-subformulas.

Definition 11. A set G ⊆ G of G-subformulas of ϕ is stable for a word w if the
following holds:

∀Gψ ∈ G. ∀i ≥ 0. wi |= Gψ

∀Gψ ∈ G \ G. ∀i ≥ 0. wi 6|= Gψ

Observe that at most one set is stable for a given word, and some words have no
stable set. Further, if a set is stable for a word, then it is stable for all its suffixes.

Lemma 6. Let ϕ be a formula, and let w be a word with stable set G. Then
w |= ϕ iff w |= ϕ[G].

Proof. (Induction on ϕ) The only non-trivial case is ϕ = Gϕ′. Consider two
subcases. If Gϕ′ ∈ G, then by the definition of stable set we have w |= ϕ and by
the definition of ϕ[G] we get ϕ[G] = tt, so w |= ϕ[G]. If Gϕ′ 6∈ G, then w 6|= Gϕ′

and ϕ[G] = ff , so w 6|= ϕ[G]. ut

Lemma 7. Let ϕ be a formula, and let w be a word with stable set G. If w |= ϕ
holds, then A has an accepting run r for w starting at ϕ. Moroever, r immediately
switches from ϕ ∈ QN to the accepting component for G.

Proof. Assume w |= ϕ and assume G is the stable set for w. Let r be the run
starting at ϕ that immediately uses the ε-transition to jump to the accepting
component for G. We show that r is accepting. Since G is a stable set for w, the
product automaton P(G) accepts w due to Lemma 5. It remains to prove that the
auxiliary monitor eventually reaches tt. By Lemma 6 we have w |= ϕ[G]. Since
ϕ[G] is G-free, we can apply Lemma 2 and obtain that the auxiliary monitor
eventually reaches tt. ut

11

Lemma 8. Let w be a word and let ϕ ∈ QN be a state in the initial component
of A. We have: w |= ϕ iff A has an accepting run r for w starting at ϕ.

Proof. Assume w |= ϕ. Let G = {Gψ ∈ G | w |= FGψ} be the set of eventually
true G-subformulas, and let i be an index such that wi |= Gψ for every Gψ ∈ G.
Then G is a stable set for wi. Consider the run that first reads w0(i−1) in the initial
component, reaching a state ϕ′, and then jumps to the accepting component for
the G. By Lemma 1 we have wi |= ϕ′, and by Lemma 7 the run is accepting.

Assume A accepts w. Let r be an accepting run. Let i be the point at which r
switches to the accepting component for some set G. By Lemma 5 we have wi |= ξ
for each ξ ∈ G. Since accepting transitions are only taken when the remaining
obligations are fulfilled (that is, when the formula in the first position of the tuple
is replaced by tt), we also obtain from Lemma 1 wi |= af (ϕ,w0(i−1))[G]. Because
the formulas are in NNF and G ⊆ {ξ ∈ G | wi |= ξ}, we have wi |= af (ϕ,w0(i−1)),
and, by Lemma 1, we finally get w |= ϕ. ut

From this lemma we immediately obtain the correctness:

Theorem 1. Let w be a word, then w |= ϕ iff A accepts w.

Further, staying for an arbitrary number of steps in the initial component is
safe, because is it always possible to switch to a successful accepting component:

Lemma 9. Let w be a finite word and let ϕ be a formula. We denote by L(q) the
language accepted from state q ∈ QA. Then the following inclusion holds:⋃

q∈δ(ϕ,w)

L (q) ⊆ L (δN (ϕ,w))

Proof. Let q ∈ δ(ϕ,w) be an arbitrary state in the accepting component reached
after reading w. Let w′ ∈ L(q) and let r′ be an accepting run for w′. We extend
r′ to a run r for ww′ starting in ϕ ∈ QN by taking the path from ϕ to q as a
prefix for r′. Iteratively applying Lemma 1 and 8 yields w′ ∈ L(δN (ϕ,w)):

ww′ ∈ L(ϕ) iff ww′ |= ϕ iff w′ |= af (ϕ,w) iff w′ ∈ L(δN (ϕ,w))

Thus L(q) ⊆ L(δN (ϕ,w)) for all q ∈ δ(ϕ,w). ut

6 Optimisations

For the experimental evaluation we apply several optimisations to the presented
construction:

First, ε-transitions are removed and replaced by the outgoing edges of the
successor state. Second, non-accepting sinks are removed, as they can be easily
recognised: from the state ff accepting edges are unreachable. Third, not all
“ε-jumps” are necessary: A run starting in Gψ1 ∧Gψ2 cannot be accepting in
the component for ∅ or {Gψ1}, since the auxiliary monitor cannot reach tt from
ff or Gψ1 ∧ χ. Hence only jumps for (minimal) satisfying assignments of a state

12

label (restricted to Gs) are constructed. Fourth, we call a state transient if every
run can only visit the state at most once, e.g. it is labelled by Xϕ. As shown in
Lemma 9 a jump to the accepting component can safely be delayed. Thus jumps
for transient states are not constructed.

While these four optimisations suppress the construction of states and edges,
also the state labels can be optimised: Fifth, G-monitors can safely replace (ξ, ζ)
by (ξ, tt) if ξ implies ζ. In a similar way the auxiliary component removes terms
already taken care of by G-monitors. Sixth, all modal operators in state labels
are unfolded, reducing the number of states: FGa is rewritten to (FGa) ∨ (Ga)
and merged with existing states.

7 Complexity

Upper Bound. Let n be the length of the formula ϕ. Since QU(Gψ) and QN
are defined using Reach, the size for QU(Gψ) and QN is O(22n). For each G ⊆
G the accepting component has at most |G| G-monitors and one auxiliary
monitor. Hence the size of the accepting component for a single G is at most
(|G|+ 1) · O(22n) = O(22n+log logn

). Summing up to:

O(22
n

) + 2|G| · O(22
n+log logn

) = O(22
n+logn+log logn

)

Lower Bound. This upper bound is matched by a double exponential (not tight)
lower bound. The language used in the proof is an adaptation of [21].

Theorem 2. There is a family of formulas φn of size O(n2) such that the
smallest limit-deterministic state-based Büchi automaton recognising L(φn) has
at least 22

n

states.

Proof. For every n ∈ N, let rn be the regular expression over the alphabet
Σ = {0, 1,#, $,%}, defined as

rn :=
∑

w∈{0,1}n
% (0|1|#)∗ # w # (0|1|#)∗ $ w

Since the language L(rωn) can be expressed by an LTL formula of size O(n2)
(Lemma 10) and the smallest limit-deterministic state-based Büchi automaton
recognising L(rωn) has at least 22

n

states (Lemma 11), the claim holds. ut

Lemma 10. There exists an LTL formula of size O(n2) defining L(rωn).

Proof. The conjunction of the following LTL formulas of size O(n2) defines L(rωn):

% ∧G($→ Xn+1%) ∧G(
∨
α∈Σ

(α ∧
∧

β∈Σ\{α}

¬β)) (1)

G(%→ X((0 ∨ 1 ∨#)U(
∧

1≤i≤n

(ϕ(i, 0) ∨ ϕ(i, 1)) ∧Xn+1#))) (2)

13

with ϕ(i, α) := Xiα ∧ ((0 ∨ 1 ∨ #)U($ ∧ Xiα)). Formula 1 ensures the basic
syntactic properties of rn, and formula 2 enforces that the literal % is always
succeeded by a string of the form (0|1|#)∗#w#(0|1|#)∗$w using ϕ(i, α) to
guarantee the existence of matching substrings #w# and $w. ut

Lemma 11. The smallest limit-deterministic state-based Büchi automaton recog-
nising L(rωn) has at least 22

n

states.

Proof. Let An be a limit-deterministic state-based Büchi automaton recognising
L(rωn). A state q is called a $-successor if there exists an accepting run r containing
the transition (p, $, q) and q is in the deterministic component of An. For every
$-successor q we denote by W(q) = {u ∈ {0, 1}n | ∃w. uw ∈ L(q)} the set of
prefixes of length n of L(q). We show that An has at least one distinct $-successor
q for each subset ∅ 6= S ⊆ {0, 1}n, such that W(q) = S. Thus An has at least
22
n

states, since not all states can be $-successors. We expose these states by the
recursively defined sequence s. Let S = {w1, w2, . . . wi} be such a subset and let
k := |Qn|:

s(S) := s|S|(S)
s1(S) := %#w1# . . .#wi#$w1

sj(S) := sj−1(S)k · sj−2(S)k · . . . · s1(S)k%#w1# · . . . ·#wi#$wj ∀1 < j ≤ i

Since s(S)ω ∈ L(rωn) holds for all non-empty S, there exists for each s(S) an
accepting run r, such that the sequence is read in the deterministic component.
Furthermore by construction we have for each $-successor q encountered reading
s(S): W(q) ⊆ S. Showing that the converse also holds concludes the proof:

Proposition 1. Let S = {w1, . . . wi}, and let 1 ≤ j ≤ i. Furthermore, assume
the sequence sj(S) is read in the deterministic part during an accepting run. Let
qj be the $-successor transitioned to after the last $ of sj(S). Then qj satisfies
W(qj) ⊇ {w1, . . . , wj}.

Proof (By induction on j). Case j = 1 is trivial. Case j > 1: By construction
sj(S) is equal to sj−1(S)k+1 up to the last $ and ends with wj instead of wj−1.
Since k = |Qn| and the sequence is read in the deterministic component, qj
occurred previously in the run on sj−1(S) as a $-successor. Hence we apply the
induction hypothesis to qj and obtain: W(qj) ⊇ {w1, . . . , wj−1}. Since wj occurs
after the last $-symbol in sj(S), we have W(qj) ⊇ {w1, . . . , wj}. ut

8 Quantitative Probabilistic Model Checking

The problem of LTL probabilistic model checking [3] is to determine the proba-
bility that an LTL formula ϕ holds on a run generated by a given Markov chain
M, i.e., PM{run ρ | ρ |= ϕ}, or more generally, for Markov decision processM
the maximal probability that ϕ is satisfied, i.e., supσ PMσ{run ρ | ρ |= ϕ}, where
σ ranges over schedulers resolving the non-determinism ofM, andMσ is the
Markov chain resulting from application of σ toM.

14

The automata-theoretic approach to model checking LTL over Markov decision
processes amounts to (1) constructing the productM×A of the systemM and
an automaton A for the LTL formula, (2) computing maximal end components
(MECs) in the product, (3) determining which MECs are accepting, and (4)
determining the maximal probability to reach the accepting MECs.

However, as opposed to the non-probabilistic model checking case, in general
the automaton A cannot be used if it is non-deterministic. Intuitively, resolving
non-determinism of the automaton may depend on the yet unknown, probabilis-
tically given future. For the same reason, limit-deterministic automata are in
general applicable only to qualitative probabilistic model checking, i.e., deter-
mining whether the satisfaction probability is 0, 1, or neither. We show that
our limit-deterministic automata can be used even in the quantitative-analysis
algorithm outlined above without conversion to a fully deterministic automaton.

Notice that the only non-deterministic transitions present in our construction
are ε-transitions. This allows us to represent the non-deterministic choice in our
LDBAA by means of additional ε-actions in the product MDP where each ε-action
only changes the automaton state. Formally, given a Markov decision process
M = (S,Act,P, s0,Ap, L) with set of states S, set of actions Act, transition
probability function P : S ×Act× S → [0, 1], initial state s0 ∈ S and labelling
function L, and given an automaton A = (2Ap, Q, δ, q0,Acc) we define the product
(M×A) =

(
(S ×Q),Act′,P′, (s0, q0),Ap, L′

)
of M and A as follows. Firstly,

for every potential ε-transition in A to some state q ∈ Q we add a corresponding
action εq in the product:

Act′ := Act ∪ {εq | q ∈ Q}

As usual, we define for all (s, q), (s′, q′) ∈ S ×Q and α ∈ Act:

L′ ((s, q)) := L(s)

P′ ((s, q), α, (s′, q′)) :=

{
P(s, α, s′) if q

L(s′)−→ q′

0 otherwise

Additionally, for all (s, q), (s′, q′) ∈ S × Q, the transition probabilities of the
ε-actions are given by

P′ ((s, q), εq̂, (s′, q′)) :=

{
1 if s = s′ and q ε−→ q′ = q̂

0 otherwise

Now we are going to show that our product can indeed be used for quantitative
model checking using the standard techniques.

Theorem 3. For any formula ϕ, the automaton A can be used in the standard
probabilistic model checking algorithm, i.e., for any Markov decision processM,

sup
σ

PMσ [L(A)] = sup
σ

P(M×A)σ [3X]

where 3X is the set of runs that reach an accepting MEC ofM×A.

15

Proof. The inequality “≥” is trivial even for general non-deterministic automata.
Indeed, every scheduler overM×A induces a scheduler overM (by elimination
of ε-transitions and subsequent projection) such that for every run (ρ, π) reaching
X, where acceptance is guaranteed, we have a run ρ ofM that is accepted by A
due to π. The scheduler thus resolved the non-determinism also of the automaton.

While the inequality “≤” generally holds only for deterministic automata, we
prove it also for our A. We define a random variable index mapping a run ρ of
M, corresponding to a word w, as follows: index (ρ) := min{i | ∀Gψ ∈ G. w |=
FGψ =⇒ wi |= Gψ}. Observe that every run has a finite index. From this point
on, the run satisfies all G-formulas that it will ever eventually satisfy; we call
the set of these formulas G(ρ).

Given a scheduler σ, a state m of Mσ is called decided if almost all runs
starting in m have index 0. In other words, almost all runs ofMσ starting in
m satisfy each G-formula already at the beginning or never. Intuitively, G is
determined by m.

Lemma 12. Let C be a bottom strongly connected component (BSCC) of a
Markov chain. Then all states of C are decided and almost all runs ρ in C have
the same G(ρ).

Proof. Let Ps[L] denote the probability that a run of the Markov chain starting
in state s induces a word from language L. Now let Gψ ∈ G. If for all c ∈ C,
Pc[L(Gψ)] = 1, then we are done. Let now c ∈ C be such that Pc[L(Gψ)] < 1. We
show that for all d ∈ C, we have Pd[L(Gψ)] = 0, thus also proving Pd[L(FGψ)] =
0. Since Pc[L(Gψ)] < 1, we have Pc[L(F¬ψ)] > 0. Therefore, with every visit of c
there is a positive probability p that ψ will be violated in the next n steps for
some n ∈ N. Since c is in a BSCC it will be visited infinitely often with probability
1 from any d ∈ C. Consequently, Pd[L(Gψ)] ≤ limk→∞(1− p)k = 0. ut

We are now ready to prove the inequality “≤”. Given a scheduler σ of M,
we define a scheduler σ′ ofM×A such that PMσ [L(A)] ≤ P(M×A)σ′ [3X]. The
scheduler σ′ follows the behaviour of σ up to the point where a BSCC is reached
inMσ. A run onMσ will almost surely reach some BSCC inMσ. Let m be the
first visited state in a BSCC of Mσ. By Lemma 12, m has unique decided G,
and σ′ then chooses the unique ε-action εq such that q ∈ QN ×QP(G). Having
performed this ε-action, the scheduler σ′ then continues to follow the behaviour
of σ indefinitely. Note that apart from emulating σ, the constructed scheduler σ′
only decides when to switch to the accepting component and with which G.

Notice that by construction every run ρσ onMσ corresponds to a run ρσ′

on (M×A)σ′
with equal transition probabilities, except for the probability of

the ε-action, which has neutral probability 1. It thus only remains to show that
if a trace of ρσ is accepted by A then the corresponding run ρσ′ , projected to
the second component, is also an accepting run on A. To this end, let All be
the set of states where A can be after reading the run up to the point where
m is reached. In particular, let init , acc ∈ All be the source and the target of
the ε-transition taken if σ′ is followed, i.e. when the transition from (m, init) to
(m, acc) under action εacc is taken. Note that other elements of All correspond to
runs of A that either switch at another time or to an accepting part QN ×QP(G′)

16

for a different G′. In order to show that σ′ always chooses an accepting run of A
if there is one, we have to show that the following constraints are satisfied:

– Lingering in the initial part and delaying the switch to the acceptance part
is safe. Formally:

L(init) ⊇
⋃
a∈All

L(a) (1)

This is shown in Lemma 9.
– Switching to the acceptance part is safe upon reaching the BSCC. Formally:

Pm[L(init)] = Pm[L(acc)] (2)

From Lemma 12 we obtain a unique G for almost all runs starting in m. Let
L(G) denote the set of runs satisfying FGψ for all Gψ ∈ G and not satisfying
FGψ for all Gψ 6∈ G. Further, the set of runs not in L(G) has zero probability,
formally Pm[L(G)] = 0. Hence it is sufficient to show L(init) ∩ L(G) =
L(acc) ∩ L(G). Here ⊇ is trivial and for ⊆ let w ∈ L(init) ∩ L(G). Observe
that G is a stable set for w. Let ϕinit be the formula label of init. Because
w ∈ L(init), w |= ϕinit. Thus we can apply Lemma 7 and obtain w ∈ L(acc).

ut

Remark 2. The limit-deterministic automata of [6] (making its first part deter-
ministic, which is informally mentioned as an option in the paper) and the one of
[14] (which is essentially the same) satisfy condition (1). Moreover, they satisfy
condition (2), not necessarily upon reaching the BSCC ofMσ, but at the latest
upon reaching the BSCC of its product with the initial part of the automaton, see
[14]. So they can also be used for quantitative probabilistic model checking using
the standard algorithm, as implicitly suggested by the more complex on-the-fly
variant of the algorithm of [14].

9 Experimental Evaluation

In our experimental evaluation we measure the state size and the number of
acceptance sets. We compare our translation to state-of-the-art LTL-to-Büchi
and LTL-to-deterministic-Rabin translators.

For the first group we use the semi-determinisation of [6] to obtain limit-
deterministic systems where the first component only uses the non-determinism
for jumping into the second component, starting a breakpoint construction. This
approach enables quantitative model checking (see Remark 2). The algorithm
is only applied when the automaton is non-deterministic and this translation is
necessary. Apart from selecting state-based Büchi automata as output, the tools
are left in their default configuration.

We compared the following tools2 where each tool is given at most 4GB of
memory and 5 minutes computing time:
2 ltl2ba was left out and the improved “successor” ltl3ba was used.

17

L3 (ltl3ba, 1.1.2) - An enhanced fork of ltl2ba with formula rewriting. [1]
S (ltl2tgba, 1.99.6) - The LTL translator from Spot. Features advanced

formula simplification and several post-processing optimisations. [9]
L2D (ltl2dstar, 0.5.3) - Translates LTL to deterministic Streett and Rabin

automata. Configured to use Spot as a translator from LTL to NBA. [17]
R (Rabinizer, 3.1) - Constructs deterministic generalized Rabin automata

avoiding Safra’s construction. Configured to produce Rabin automata. [19]
LD (ltl2ldba) - Implementation of the proposed construction without any post-

processing. Available at: www7.in.tum.de/~sickert/projects/ltl2ldba

Büchi Acceptance Rabin Acceptance

L3 S LD L2D R

j = 1 10 (1) 11 (1) 3 (1) 5 (4) 2 (4)
j = 2 21 (1) 21 (1) 4 (2) 17 (6) 3 (6)
j = 3 44 (1) 44 (1) 5 (3) 49 (8) 4 (8)
j = 4 95 (1) 95 (1) 6 (4) 129 (10) 5 (10)

k = 2 40 (1) 62 (1) 5 (2) 4385 (14) 13 (8)
k = 3 326 (1) 571 (1) 9 (3) * 198 (16)

ϕ1 37 (1) 12 (1) 9 (3) 6 (4) 7 (6)
ϕ2 39 (1) 33 (1) 7 (3) 27 (4) 6 (6)
ϕ3 35 (1) 14 (1) 19 (3) 7 (6) 13 (6)

f(0, 0) 5 (1) 5 (1) 5 (1) 5 (2) 5 (4)
f(0, 2) 16 (1) 16 (1) 10 (1) 10 (4) 7 (4)
f(0, 4) 18 (1) 18 (1) 16 (1) 12 (4) 9 (4)
f(1, 0) 51 (1) 64 (1) 6 (3) 196 (10) 17 (6)
f(1, 2) 138 (1) 345 (1) 28 (3) 109839 (22) 33 (6)
f(1, 4) 943 (1) 2450 (1) 58 (3) * 70 (6)
f(2, 0) 289 (1) 215 (1) 10 (4) 99793 (22) 41 (8)
f(2, 2) 915 (1) 1061 (1) 46 (4) * 94 (8)
f(2, 4) 12314 (1) 14161 (1) 92 (4) * 139 (8)

Σ [5] 55444 (353)*** 29559 (356) 9518 (889)** 382350 (1670)* 10616 (2554)**

Table 1. Number of states and number of acceptance sets in parenthesis for the
constructed automata. The smallest and second smallest state spaces are highlighted.
Each resource exhaustion is marked with an additional *. Abbreviated formulas: ϕ1 =
GF(Fa ∨Gb ∨ FG(a ∨ (Xb)), ϕ2 = FG(Ga ∨ F¬b ∨GF(a ∧ Xb)), ϕ3 = GF(Fa ∨
GXb ∨ FG(a ∨XXb))

We consider the following five groups of formulas:

1. The first group of formulas in Table 1 are from the GR(1) fragment of LTL
and parametrised by j:

∧j
i=1(GFai) =⇒

∧j
i=1(GFbi). These have been

previously used in [20].

18

2. The second group of formulas are fairness constraints, taken from [11], and
are parametrised by k:

∧k
i=1(GFai ∨ FGbi)

3. The third section looks at formulas with light nesting of modal operators.
4. In the fourth section we explore the effect of deeply nesting modal operators

using the parametrised formula f .

f(0, j) = (GFa0)U(Xjb) f(i+ 1, j) = (GFai+1)U(Gf(i, j))

While the automata sizes are close to each other for i, j = 0, this immediately
changes after increasing the parameters controlling the nesting depth.

5. The last entry is cumulative and sums up results for 359 formulas. These
formulas are from the collection used in [5]. The authors collected these from
existing sources, such as [23, 10, 12, 13], and additionally included randomly
generated formulas.

10 Conclusion

We present a direct translation from LTL formulas to limit-deterministic Büchi
automata. The approach relies on decomposing the formula, constructing small
automata for each G and building a product deciding acceptance. The complexity
analysis shows that translating LTL to limit-deterministic automata is in the
worst case double exponential, which is matched by existing constructions and the
novel approach. The experimental section shows that for deeply nested formulas
the presented approach outperforms existing tools and in the general case is as
good as the other tools.

There are several open questions we want to investigate. First, we have not
included the Release-operator in the syntax. While this does not have an impact
on the expressiveness of the logic, direct support for it would be favourable.
Second, it is open, if is possible to adapt the construction such that for the
LTL\GU fragment the size is also exponential as in [16]. Third, we would like
to investigate the impact of specialised and standard post-processing steps on
the size of the automaton. Fourth, we want to study the performance impact of
using this construction for quantitative model checking.

Finally, in the area of reactive synthesis DRAs can be replaced by good for
games Parity automata [15, 18]. Studying the connection to our translation, and
a possibility of adapting our work for reactive synthesis is open.

Acknowledgments. The authors want to thank Orna Kupferman for suggesting
the language for proving the lower complexity bound.

References

1. Babiak, T., Křetínský, M., Rehák, V., Strejcek, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: TACAS. LNCS, vol. 7214, pp. 95–109
(2012)

19

2. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrel, J.: Markov
chains and unambiguous Büchi automata. In: To appear in CAV 2016, preprint
available at http://arxiv.org/abs/1605.00950 (2016)

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
4. Blahoudek, F., Heizmann, M., Schewe, S., Strejcek, J., Tsai, M.: Complementing

semi-deterministic Büchi automata. In: TACAS. LNCS, vol. 9636, pp. 770–787
(2016)

5. Blahoudek, F., Křetínský, M., Strejček, J.: Comparison of LTL to deterministic
Rabin automata translators. In: LPAR. LNCS, vol. 8312, pp. 164–172 (2013)

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

7. Couvreur, J., Saheb, N., Sutre, G.: An optimal automata approach to LTL model
checking of probabilistic systems. In: LPAR. LNCS, vol. 2850, pp. 361–375 (2003)

8. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: ATVA. LNCS, vol.
8172, pp. 442–445 (2013)

9. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal
on Critical Computer-Based Systems 5(1/2), 31–54 (Mar 2014)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE. pp. 411–420 (1999)

11. Esparza, J., Křetínský, J.: From LTL to deterministic automata: A safraless com-
positional approach. In: CAV. LNCS, vol. 8559, pp. 192–208 (2014)

12. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: CAV. LNCS,
vol. 2102, pp. 53–65 (2001)

13. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking.
In: SPIN. LNCS, vol. 3925, pp. 53–70 (2006)

14. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: CONCUR. LIPIcs, vol. 42, pp. 354–367 (2015)

15. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: CSL.
LNCS, vol. 4207, pp. 395–410. Springer (2006)

16. Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL
\ GU. In: TACAS. LNCS, vol. 9035, pp. 628–642 (2015)

17. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

18. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good
for probabilistic model checking? In: LATA. LNCS, vol. 8370, pp. 453–465 (2014)

19. Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small
deterministic automata. In: ATVA. LNCS, vol. 8837, pp. 235–241 (2014)

20. Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: CAV. LNCS, vol. 7358, pp. 7–22 (2012)

21. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Trans.
Comput. Log. 6(2), 273–294 (2005)

22. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591 (2011)

23. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN. LNCS, vol.
4595, pp. 263–267 (2007)

24. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science 3(3) (2007)

25. Safra, S.: On the complexity of omega-automata. In: FOCS. pp. 319–327 (1988)
26. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: FoSSaCS.

LNCS, vol. 5504, pp. 167–181 (2009)
27. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs.

In: FOCS. pp. 327–338 (1985)

20

